DRAG

Webinar Series: Incident Response for OT Environments OT INCIDENT RESPONSE IS DIFFERENT

Safeguarding Civilization

INTRODUCTION

Vern McCandlish

- Principle Industrial Incident Responder
- Based in the United States
- 20+ years of industrial cybersecurity experience including law enforcement and forensics

Hussain Virani

- Senior Industrial Incident Responder
- Based in Canada
- 10+ years in the oil and gas sector as an investigator and forensic analyst

THREE-PART SERIES ON OT IR

- 5 Critical Controls as a foundation for any OT cybersecurity program
- Establishing an Incident Response Plan

- Difference of incident response in OT and IT
- Incident Management
- IR Data Collection

- Empower people
- Improve processes
- Train to win
- Defeat the threat

THREE-PART SERIES ON OT IR FIRST WEBINAR IS AVAILABLE ON-DEMAND

ON-DEMAND WEBINAR

Incident Response for ICS: You Are Not Alone!

Critical Controls for Consequence-Driven Incident Response

Original Air Date: 1/18/23

Listen in as panelists dive into details on the following topics:

- The risk profile for ICS/OT environments what's really at stake?
- Why an ICS Incident Response Plan is a must-have for OT environments, and how it differs from IT.
- 5 Critical Controls for OT cybersecurity, and their significance for consequence-driven Incident Response

INCIDENT COMMAND AND MANAGEMENT

CYBER RISK

OPERATIONAL TECHNOLOGY (OT) VS. INFORMATION TECHNOLOGY (IT)

Different systems, network traffic, adversaries, and need to manage vulnerabilities differently

- Loss of electrical grid, water systems, safety systems, pipeline, or plant operations
- Loss of revenue generating operations for industrial companies

Impact From a Major Cyber Security Incident F

2

- Loss of data, intellectual property, network services
- Loss of revenue generation for services, financial, & technology companies

TALKING ABOUT IMPACT CONSIDERING CONSEQUENCES IN OT

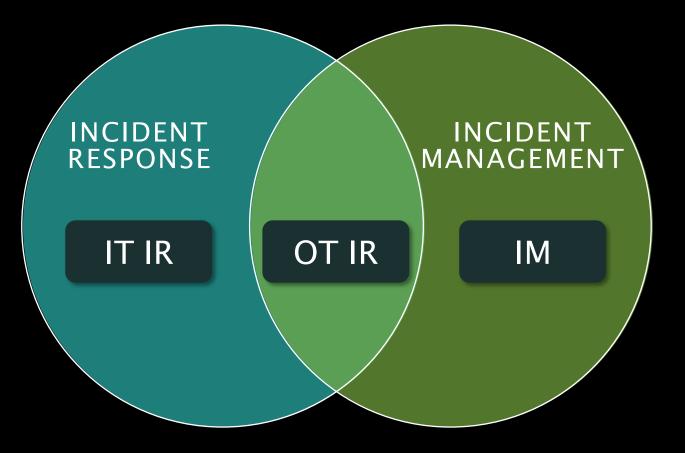
POTENTIAL CONSEQUENCE	EXAMPLES	CYBER INCIDENT EXAMPLE
Plant damage	 Damage to control system equipment Excessive wear on final elements (such as actuators) Over-pressurization of vessels and pipework Fire or explosion 	TRISISCrashOverride
Loss of production	 Plant trips (opening of circuit breakers, activation of shutdown measures). Manual shutdown of plant as a conservative decision. Manual shutdown of plant due to loss of billing, production, shipping data from ERP systems. 	 CrashOverride TRISIS Colonial Pipeline Norsk Hydro Honda Mariposa Botnet at Electric Utility (2012)

TALKING MORE ABOUT IMPACT CONSIDERING CONSEQUENCES IN OT

POTENTIAL CONSEQUENCE	EXAMPLES	CYBER INCIDENT EXAMPLE
Impact on product quality	 Contamination of product. Changes to logic sequences. Delay in sealing/packaging/chilling product. 	• Oldsmar Water treatment facility attack
Industrial safety event	member of the public	 No known public record of cyber-attack leading to injury or death of onsite worker or member of the public.
Environmental safety event	 Uncontrolled release to the environment Discharge of untreated effluent Loss of containment 	• Maroochy Shire Sewage Spill

INCIDENT MANAGEMENT (IM)

The National Fire Protection Association provides a definition of Incident Management (IM): "the combination of facilities, equipment, personnel, procedures and communications operating within a common organizational structure, designed to aid in the management of resources during incidents".


INCIDENT MANAGEMENT (IM)

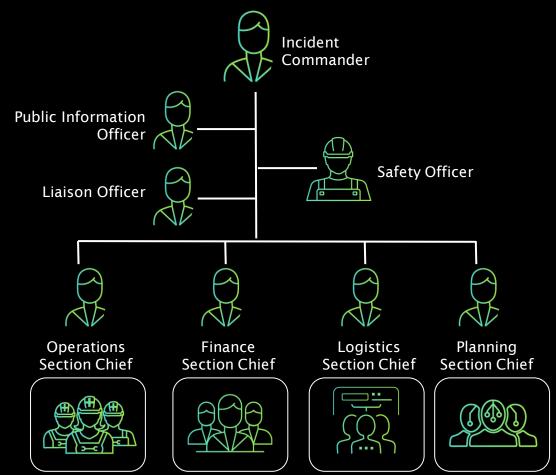
COMPAIRSON OF DIFFERENT INCIDENT

COMPONENT / SITUATION	FIRE	COMPONENT / SITUATION	INCIDENT RESPONSE
Facilities	Control center	Spill kitsEye wash stationsControl center	HelpdeskSOCForensics Lab
Equipment	Fire extinguishersFire blanketsRisers	 PPE Absorbent materials	 Security tools Hard drive write-blockers Evidence bags
Personnel	Fire crewsDuty officer	• First aid team	AnalystsDFIR specialists
Procedures	• Evacuation, muster	ContainmentClean-upReporting	IR planBCP
Communications	 Fire alarm All clear Call to fire Brigade 	• Emergency contact number	 Report an event Comms to employees Press releases

CONVERGENCE OF IR AND IM OT INCIDENT REPONSE NEEDS INCIDENT MANAGEMENT

Safety and OT often have a strong incident management focus

Historically incident response has been part of the IT domain


OT incident response must consider both domains

INCIDENT COMMAND SYSTEM ESTABLISH STRUCTURE PRE-INCIDENT

- Parties involved in OT incident response are significantly different to IT IR
- Used by fire services, military, and law enforcement
- Scales well in real time
- Keeps individuals and teams focused on their part of response
- Includes prior planning for logistics and messaging

DRAGOS

12

INCIDENT DATA COLLECTION

COLLECTING FROM OT NETWORKS

on the most valuable hosts and datasets

FOCUS

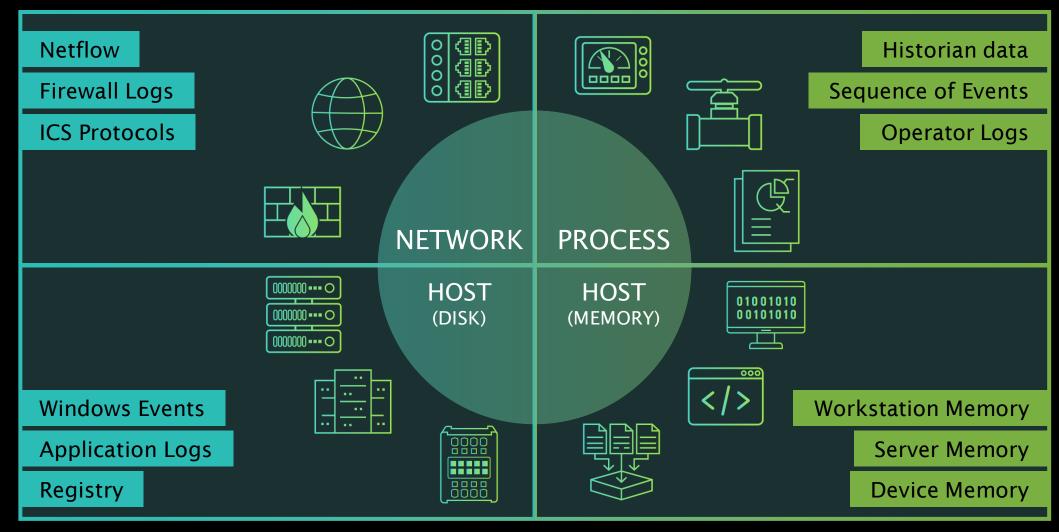
PRIORITIZE collection of volatile, time-sensitive or time-consuming datasets

COLLECT

from individual systems via removable media

IT approaches for (forensic) data collection may fail in OT Focus and prioritize crown jewel applications Assess available (forensic) data and their retention time Collection might require on-site presence

Prepare access/ removable drives and validate procedures


COLLECTION MANAGEMENT FRAMEWORK (CMF) SUSTAINED VISIBILITY INTO YOUR ENVIRONMENT

A CMF is the practice of documenting all the potential sources of data that could be used by incident responders and investigators

- Includes all digital assets such as computers, data loggers, network equipment, PLCs
- Anything that contains logging or forensic information that could inform an analyst during an investigation is valuable

OVERVIEW: COLLECTION DATA SETS

NETWORK COLLECTION

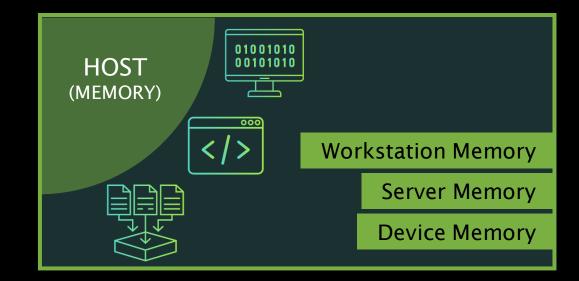
EXPLAIN EACH DATASET AND THEIR RELEVANCE FOR OT IR AND CONTRAST TO IT IR

Passive network collection allows for baselining and investigations


DRAGOS PLATFORM EXPERTISE INTEGRATED INTO SOFTWARE TO REDUCE OT RISK

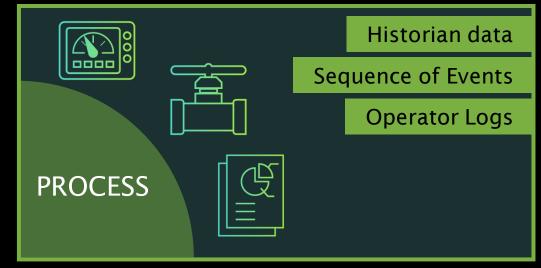
HOST (DISK) COLLECTION

- Automated collection of initial triage data (e.g., registry, system logs)
- Disk images are likely secondary for initial triage, but may be required for forensics
- Acquire data to perform root-cause analysis



HOST (MEMORY) COLLECTION VOLATILE SYSTEM DATA

- For quick triage and incident response volatile data (memory) is a valuable source
- Malware and system behavior can be reconstructed, active communications can be captured
- Field devices may not have persistent memory and memory is the only available source


DRAGOS

- Beware of legacy operating systems and ensure tool compatibility
- Memory acquisition might impact system operations and need to be tested before

PROCESS DATA COLLECTION INDUSTRIAL PROCESS AND ITS LOGS

- Process data is often overlooked by IT incident responder
- Historically industrial processes generate and log data (records-keeping, legal, optimization)
- Can be digital, analog, or even verbal
- Likely non-standardized and distributed within the plant/organization
- Acquisition in collaboration with plant personnel
- Provides important information on process anomalies, normal operation and allows correlation

OT INCIDENT RESPONSE PROCESS

INCIDENT REPONSE PROCESS IN OT

PREPARE	INCIDENT RESPONSE TEAM			
	INCIDENT RESPONSE TEAM	Incident Response workflow, but differences in OT	Ownership of "Contain, Eradicate and Recover" is usually with OT	
	OT OPERATORS		operators	
ERADICATE	OT OPERATORS	Containment and		
Cital RECOVER	OT OPERATORS	Eradication performed co until no furthe	n might be ontinuously	
LESSONS LEARNED	JOINT ACTIVITY	of compromis	se are found	

INCIDENT REPONSE PROCESS IN OT

- PIRCERL provides a good outline for an IRP
 - Utilize each phase as a headline
 - Preface with key information, workflow diagram and contact data
- Be aware of differences in ownership
- More details on each phase of the PICERL process on our next webinar

WEBINAR SUMMARY

SUMMARY KEY TAKEAWAYS

Impact in OT environments can be different to what organizations prepare for in IT

2 Incident Response in OT requires structure and more involved parties than IT IR

3

Data collection requires special consideration and preparation

Network visibility and asset inventory are key success criteria for OT Incident Response

4

THANK YOU

Email: vmccandlish@dragos.com

Email: <u>hvirani@dragos.com</u>